

A COMPARATIVE ANALYSIS OF DESIGN LANGUAGES
FOR HARDWARE-SOFTWARE SYSTEMS

Bojan Anđelković, Vančo Litovski, Faculty of Electronic Engineering Niš

Abstract – In this paper a comparative analysis of design
languages VHDL-AMS, Java, SystemC, SystemVerilog and
AleC++ is given. Modeling features and capabilities of all
languages are explored and compared using appropriate
benchmark examples. Also, advantages and restrictions of
these languages for the description of various hardware-
software systems at different levels of abstraction are pointed
out.

1. INTRODUCTION

 The increase in the development of complex, mixed-
signal integrated circuits, micro-opto-electro-mechanical
systems and systems-on-a-chip (SoC) has leaded in a need for
powerful Hardware Description Languages (HDLs) capable
for modeling and simulation of these systems in different
domains and at various levels of abstraction. Such languages
should provide the description of both hardware components
and software routines.

Modern hardware-software design languages are based
either on software programming languages or hardware
description languages. In order to achieve hardware
modeling, software languages are usually extended or special
libraries are provided. The Java programming language
enables modeling of hardware and software modules using
object-oriented programming techniques. VHDL-AMS is a
hardware description language optimized for continuous,
discrete and mixed-signal hardware modeling. Hardware
modeling at Register-Transfer Level (RTL) is too low as an
abstraction level for design of very complex systems. It is
also necessary to describe an entire system, including
embedded software, which is beyond the capabilities of
existing HDLs. Therefore, special languages for SoC design
have been developed. SystemC is a C++ subset for system-
level modeling. SystemVerilog is an extension of the Verilog
language to support system level modeling and object-
orientation. AleC++ is an object-oriented HDL developed for
use in simulator Alecsis. It enables structural and behavioral
description of analog, logic and mixed-signal systems at any
level of abstraction and in different domains. Since it is a
superset of C++, AleC++ can also be used for description of
software routines.

This paper presents a comparative analysis of design
languages used for modern hardware-software systems
modeling. Advantages and drawbacks of different languages,
specifically VHDL-AMS, Java, SystemC, SystemVerilog and
AleC++ are pointed out. Also, modeling capabilities and
usage of these languages in different domains are explored.
Section 2 presents main features of VHDL-AMS. In Section
3 application of Java as a hardware and software description
language is described. In Section 4 and Section 5 the system-
level languages SystemC and SystemVerilog are introduced,
respectively. Section 6 describes main features of AleC++.
Finally, Section 7 gives some conclusions.

2. VHDL-AMS

VHDL-AMS is a hardware description language that
provides behavioral and structural description of both discrete
and continuous hardware systems from different domains.
The language is an Analog and Mixed-Signal extension to the
Very High Speed Integrated Circuits Hardware Description
Language (VHDL) [1].

VHDL-AMS allows for a clear separation betweeen the
interface of a model, called entity, and its internal
functionality, called architecture. The model can have one or
more architectures and when it is instantiated in a structural
description the designer specifies which of several
architectures to use for each instance.

Modeling of continuous systems is based on the theory
of Differential and Algebraic Equations (DAEs) [2]. VHDL-
AMS also has the ability to describe non-electrical physical
phenomena. Mixed-discipline models with different domains
such as electrical, physical, and thermal can be described and
simulated in a single design environment.

A structure of a VHDL-AMS model and an overview of
the language elements and statements are given with the help
of a simple circuit with a diode shown in Fig. 1.
ENTITY Diode_Cir IS
 PORT (TERMINAL n1, n2: electrical);
END;

ARCHITECTURE behav OF Diode_Cir IS
 QUANTITY v_in ACROSS i_out THROUGH n1 TO electrical_groun

 QUANTITY u_D ACROSS i_D THROUGH n1 TO n2;
 QUANTITY u_r1000 ACROSS i_r1000 THROUGH n2 TO electrical_groun

BEGIN
 v_in==1000.0 * sin (6.28 * now * 1000.0);

 i_r1000 == u_r1000/1000; -- resistor
 IF v_in > 0.00 USE -- diode
 u_D == 0.0;
 ELSE
 i_D == 0.0;
 END USE;
END;

Fig. 1 VHDL-AMS model

For representing the unknown continuous variables in
the system of DAEs, VHDL-AMS introduces a new class of
objects, the quantity [2]. Additional across and through
branch quantities are provided to support conservation
semantics of the systems like electrical circuits. In the
example, the branch quantities are diode and resistor voltage
and current. They are declared with reference to two
terminals. Terminals can be of different natures that
represent distinct energy domains (electrical, thermal, etc.).

The system of DAEs can be described using
simultaneous statements [2]. VHDL-AMS also provides two
special simultaneous statements, called simultaneous if and
simultaneous case, to change the set of equations.

For implementing A/D conversions, VHDL-AMS
provides quantity attribute above. When the value of a
quantity Q crosses a threshold E the Boolean signal

Zbornik radova 49. Konferencije za ETRAN, Budva, 5-10. juna 2005, tom I
Proc. 49th ETRAN Conference, Budva, June 5-10, 2005, Vol. I

95

Q’Above(E) evaluates to TRUE if Q>E and FALSE if Q<E
[2]. A special construct called the break statement is used to
represent discontinuities in VHDL-AMS model descriptions
and new initial conditions.

VHDL-AMS also supports small-signal frequency
domain and noise simulation using special source quantities.
They allow a designer to define small-signal stimulus in the
frequency domain and noise.

Since DAE solvers use numerical algorithms to solve the
equation systems, VHDL-AMS enables the designer to
specify individual tolerances for quantities, which must be
satisfied by the simulator.

However, since systems on chips more and more include
different electrical and nonelectrical components, as well as
embedded software, models written in VHDL-AMS could
become too low-level and the appropriate simulators too slow
for validating a complete system. Also, the language does not
have high-level programming constructs, and this makes it
difficult to specify software and systems at higher levels of
abstraction. In addition, VHDL-AMS is not suitable to
directly specify partial differential and algebraic equations
necessary for modeling micro-electro-mechanical and
microelectrofluidic systems, as shown in [3]. Because of
component-level-oriented modeling features it can not be
used to describe system-level behavior, as well.

3. JAVA

Java is an object-oriented, general-purpose, concurrent,
platform-independent programming language. It can be used
for both software and the description of hardware [4].

It is a platform-independent language because its run-
time environment is an abstract machine called the Java
virtual machine containing its own instruction set called
bytecodes. Java programs consist of multiple classes, which
are compiled into a bytecode representation called class file
format. Classes include data fields and methods. If they are
declared as static, they are shared by all instances of that
class, while non-static fields and methods are duplicated for
each new instance. Data types in Java are primitive types
such as integers, floats and characters and references to class
instances and arrays.

C/C++ does not provide explicit language constructs to
express concurrency. In Java concurrency can be explicitly
implemented by threads as shown in an example of counter
model (Fig. 2).

Threads are created by extending the Thread class and
overriding its run method to describe the thread behavior.
Then, when instances of this class are created, they call their
start methods to start executing the objects’ run methods.
Synchronizing a method or block uses a per-object lock to
resolve the situation when two or more threads attempt to
access the same object simultaneously. When a thread
attempts to access an object owned by another thread it will
be blocked until the access to the object is released.

Unlike C/C++, Java doesn’t use pointers and its
automatic garbage collection frees the programmer from
memory management. However, Java does not support class
templates and operator overloading provided in C++ that
results in a need for numerous procedure calls.

class Counter {
int value;
boolean present = false;
public Counter() {
value = 5;
}
public Counter(int arg) {
value = arg;
}
public synchronized void count() {
try { while (present) wait(); }
catch (InterruptedException e) {}
value++; present = true; notifyAll();
}
public synchronized int read() {
try { while (!present) wait(); }
catch (InterruptedException e) {}
present = false; notifyAll();
return value;
}
}
class Count extends Thread {
Counter cnt;
public Count(Counter c) { cnt = c; start(); }
public void run() { for (int i=0; i<20; i++) cnt.count();
}

Fig. 2 Counter model in Java

4. SYSTEM C

SystemC is a C++ class library used for system level
modeling of concurrent systems [5]. It is a design language
especially suitable for description of mixed
hardware/software systems.

SystemC provides some advantages over general-
purpose programming languages, such as C++ and Java. Such
software programming languages are based on sequential
programming and therefore they are not suited for the
modeling of concurrent processes. Also, system and hardware
components require a specification of delays, clocks and time
that are not present in C++ and Java. Signals and ports used
for communication in hardware models are different from
those used in software programming. Data types existing in
C++ and Java are not suitable for describing hardware
implementation.

SystemC defines data types dedicated to hardware
modeling such as bit and vector types. Hardware or software
description is encapsulated inside a C++ class called module.

An example of counter model in SystemC [5] is shown
in Fig. 3.

Modules are similar to VHDL-AMS entity/architecture
pairs and they represent basic building blocks of a
hierarchical system.

All modules in SystemC are derived from the existing
base class sc_module. They consist of concurrent processes
describing their behavior. Modules communicate with each
other through channels and ports. Ports are created from
existing SystemC template classes. Channels are generalized
form of signals in VHDL-AMS. Simulation instructions such
as channels to be traced, the simulator’s resolution, top level
instance, simulation time and other are located inside a
function called sc_main similar to main function in Java. A
SystemC model can be simulated by compiling it with a
standard C++ compiler and it uses a discrete-event simulation
model.

96

class counter: public sc_module {
 int value;
public:
 sc_in<bool> clk;
 sc_in<bool> count;
 sc_in<bool> reset;
 sc_out<int> q;

 SC_HAS_PROCESS(counter);

 counter(sc_module_name nm): sc_module(nm), value(0)
 SC_METHOD(do_count);
 sensitive<< clk.pos() << reset ;
 }
protected:
 void do_count() {
 if (reset) { value = 0; }
 else if (count) {
 value++;
 q.write(value);
 }
 }
};

Fig. 3 Counter model in SystemC

SystemC fills a gap between traditional HDLs and
software programming languages such as C++ and Java. It
provides the flexibility of operating with a general-purpose
programming language but it is primarly intended for system-
level descriptions. However, VHDL-AMS is more
appropriate for low-level physical descriptions than SystemC.
Just as VHDL-AMS is not an optimal language for system-
level modeling and high performance system prototypes,
SystemC is not the right language for hardware description at
gate level. Moreover, SystemC does not support modeling
and simulation of continuous-time, mixed-signal and
multidiscipline systems. There is currently an ongoing effort
to enhance SystemC with appropriate constructs for analog
and mixed-signal modeling similar to that in VHDL-AMS
[6].

5. SYSTEM VERILOG

SystemVerilog is a set of extensions to the IEEE 1364-
2001 Verilog to enable a higher level of abstraction for
modeling and verification with the Verilog HDL. It is
intended to become an IEEE standard in 2005.

It incorporated some of the features already found in
VHDL, such as strong data typing, time units, enumerated
types, records, multidimensional arrays, separate entity and
architecture, iterated and conditional instantiations and
configurations [7].

There are also features that have been requested by
VHDL engineers that are readily available in SystemVerilog.
‘ifdef conditional compilation enables selection between
different design implementations and testbench options. The
fork-join statement allows for the spawning of multiple
processes and optionally waiting for all the processes to
complete before continuing execution of other processes and
code. Multiple concatenation and replication enables
replication of the contents of a bit or range of multiple bits.
SystemVerilog also provides an object-oriented programming
model. It supports virtual methods and classes, single
inheritance, data and method overloading, static data
members and constructors.

Additional SystemVerilog features not found in VHDL
include logic-specific processes, implicit port connections,

unions and interfaces. Logic-specific processes extend
Verilog’s always blocks for modeling combinational, latched
or clocked processes. An example of SystemVerilog model is
shown in Fig. 4. The example demonstrates the use of
interfaces that enable efficient system-level descriptions.

However, SystemVerilog supports modeling of only
discrete systems. Continuous and mixed-signal systems can
not be described. Also, it is not an optimal language for
system-level modeling and building high performance system
prototypes, as SystemC.

interface chip_bus (input wire clk);
wire request, ready;
wire [31:0] address;
wire [31:0] data;
modport cpu(input clk, output request...)
modport ram(input clk, output request...)
end interface

module CPU (chip_bus .cpu io);
...
endmodule
module RAM (chip_bus .ram pins);
...
endmodule
module TOP;
wire clk;
chip_bus a(clk);
CPU CPU(a.cpu);
RAM RAM(a.ram);
end module

Fig. 4 SystemVerilog model

6. ALEC++

AleC++ (Analog and Logic Electronic C++) is an object-
oriented design language developed for use in the simulator
Alecsis [8]. It can be used for modeling of both discrete and
continuous hardware systems from various domains at
different levels of abstraction. AleC++ provides some
additional useful features, both for modeling hardware
components and system-level descriptions, not found in other
design languages [8].

VHDL-AMS uses process statements for defining
synchronization of discrete-event models. For analog models
processes are not used. AleC++ uses processes for both
discrete and continuous parts of the model. Component
definition, called module in AleC++, can contain any number
of processes. Processes give the designer full control over the
execution of the model.

AleC++ provides structural and behavioral modeling
styles as well as the combination of the two. Contributions to
the system of equations describing model can be defined by
explicitly writing equations and modifying contributions of
structurally connected built-in or previously defined models.
Writing equations in AleC++ is very similar to that in
VHDL-AMS. There are three eqn statements (simple,
through and across) equivalent to simultaneous statements in
VHDL-AMS that enable description of equations containing
quantities. The second approach of modifying contributions
of connected submodels is not found in VHDL-AMS, but it is
very user-friendly. It is based on describing equivalent
circuits of semiconductor components using built-in or
previously defined models. Every engineer is familiar with
this approach, so it is easy to learn. One more important issue

97

is that errors in such model can be easily detected comparing
to the model consisting of equations.

AleC++ provides using of different built-in elements
similar to SPICE components. VHDL-AMS does not provide
such compatibility with the SPICE netlist format, although it
has all necessary language constructs to build a library of
SPICE elements models.

AleC++ inherited object-orientation from C++. Since
modeling is an object-oriented problem by its nature this is a
very useful feature. VHDL-AMS does not support object-
orientation in its formal definition, although there are some
attempts to implement it. A simple model of a diode using
object-oriented features in AleC++ is shown in Fig. 5.

class new_diode {
double is;
double eta; //model parameters
public:
new_diode(); //constructor
~new_diode(); //destructor
>new_diode(); // PREPROCESSOR
double calculate_current(double);
friend module ndio;
}
module new_diode::ndio (anode, cathode)
...
action() {
process per_iteration {
double diode_current;
diode_current =
calculate_current(anode-cathode);
...
}
}
}

Fig. 5 AleC++ model

AleC++ also has some useful features for the description
of digital systems, which do not have their counterparts in
VHDL and VHDL-AMS. In AleC++ it is possible to declare
and define functions with a variable number of arguments as
in C/C++. Besides this, the number of parameters passed to
the model and the number of formal signals that are terminals
of a module can be variable. It is useful for describing the
regular structures and logic blocks with variable number of
input/output signals.

AleC++ supports the declaration of user-defined signal
attributes of any legal type. They can be used for setting
signal values in the preparation phase of the simulation and
for modeling parasitic capacitance in simulation of digital
circuits. VHDL-AMS does not provide the use of user-
defined signal attributes.

Since AleC++ is a superset of C++, it can be used for
modeling of hardware/software systems [8]. This gives
designers an opportunity to describe both hardware and
software components using one uniform design language.

7. CONCLUSION

This paper presented a comparative survey of nowadays
design languages for hardware-software systems. Since
modern mixed-signal SoC contain both analog and logic
components as well as embedded software there is no a
uniform language capable for the description of such system.
Also, in order to simulate such complex system that language

should be developed having in mind simulation algorithms.
VHDL-AMS is a hardware description language for
continuous, discrete and mixed-signal systems. Java is a
software programming language that provides some useful
features, such as object-orientation, that can be used for
hardware modeling, as well. SystemC and SystemVerilog
offer object-oriented constructs together with hardware
specific features for system level descriptions. AleC++ is an
object-oriented HDL that can be used for description of
various hardware and software components and systems.
Many of the features it provided at the time of the
development now are included in standard design languages.

REFERENCES

[1] IEEE Computer Society, IEEE Standard VHDL-AMS
Language Reference Manual, IEEE Computer Society,
1999.

[2] P. Ashenden, G. Peterson, D. Teegarden, The System
Designer’s Guide to VHDL-AMS, San Francisco:
Morgan Kaufmann Publishers, 2003.

[3] T. Zhang, K. Chakrabarty, R. Fair, “Behavioral Modeling
and Performance Evaluation of Microelectrofluidics-
Based PCR Systems Using SystemC”, IEEE Trans. on
Computer-Aided Design of Integrated Circuits and
Systems, vol. 23, no. 6, pp. 843-858, June 2004.

[4] R. Helaihel and K. Olukotun, “Java as a Specification
Language for Hardware-Software Systems”, in Proc. of
the 1997 IEEE/ACM International Conference on
Computer-Aided Design, pp. 690-697, 1997.

[5] Introduction to SystemC Tutorial, Esperan 2005.,
http://www.esperan.com

[6] H. Al-Junaid and T. Kazmierski, “An Extension to
SystemC to Allow Modelling of Analogue and Mixed
Signal Systems at Different Abstraction Levels”,
http://eprints.ecs.soton.ac.uk/9944/

[7] C. Cummings, “SystemVerilog – Is This The Merging of
Verilog & VHDL?”, www.sunburst-design.com/papers/
CummingsSNUG2003Boston_SystemVerilog_VHDL.
pdf

[8] V. Litovski, D.Maksimović, Ž. Mrčarica, “Mixed-signal
modeling with AleC++: Specific features of the HDL”,
Simulation Practice and Theory 8, pp. 433-449, 2001.

Sadržaj – U ovom radu predstavljena je uporedna analiza
jezika za projektovanje VHDL-AMS, Java, SystemC,
SystemVerilog i AleC++. Istražene su i upoređene
mogućnosti i osobine ovih jezika korišćenjem odgovarajućih
testnih primera. Takođe, ukazano je na prednosti i
ograničenja ovih jezika za opisivanje različitih hardver-
softver sistema na različitim nivoima apstrakcije.

UPOREDNA ANALIZA
JEZIKA ZA PROJEKTOVANJE
HARDVER-SOFTVER SISTEMA

Bojan Anđelković, Vančo Litovski

98

